AI-Powered Task Management Application
This innovative task management application leverages artificial intelligence to help users organize, prioritize, and complete their tasks more efficiently. The system uses machine learning to understand user patterns and provide intelligent suggestions.
Key Features
🤖 AI-Powered Smart Scheduling
The application analyzes your task history, deadlines, and productivity patterns to suggest optimal scheduling:
# AI scheduling algorithm
class SmartScheduler:
def __init__(self, user_id: str):
self.user_id = user_id
self.user_patterns = self.load_user_patterns()
def suggest_schedule(self, tasks: List[Task]) -> Schedule:
# Analyze task complexity and user energy patterns
energy_levels = self.predict_energy_levels()
task_complexities = self.analyze_task_complexity(tasks)
schedule = Schedule()
for task in sorted(tasks, key=lambda t: t.priority):
optimal_time = self.find_optimal_time_slot(
task, energy_levels, task_complexities[task.id]
)
schedule.add_task(task, optimal_time)
return schedule
📊 Productivity Analytics
Comprehensive analytics dashboard showing productivity trends, time allocation, and improvement suggestions:
interface ProductivityMetrics {
completionRate: number;
averageTaskDuration: number;
productiveHours: HourRange[];
weeklyTrends: TrendData[];
categoryBreakdown: CategoryStats[];
}
const ProductivityDashboard: React.FC = () => {
const { metrics, loading } = useProductivityMetrics();
return (
<div className="dashboard-grid">
<CompletionRateChart data={metrics.completionRate} />
<ProductiveHoursHeatmap hours={metrics.productiveHours} />
<WeeklyTrendsChart trends={metrics.weeklyTrends} />
<CategoryBreakdown categories={metrics.categoryBreakdown} />
</div>
);
};
🎯 Intelligent Priority Detection
The system automatically analyzes task descriptions to suggest priority levels and categorization:
from transformers import pipeline
import spacy
class TaskAnalyzer:
def __init__(self):
self.sentiment_analyzer = pipeline("sentiment-analysis")
self.nlp = spacy.load("en_core_web_sm")
def analyze_task(self, description: str) -> TaskAnalysis:
# Extract key information from task description
doc = self.nlp(description)
# Detect urgency keywords
urgency_keywords = ["urgent", "asap", "deadline", "immediately"]
urgency_score = sum(1 for token in doc if token.text.lower() in urgency_keywords)
# Analyze sentiment for stress detection
sentiment = self.sentiment_analyzer(description)[0]
# Estimate complexity based on description length and entities
complexity = self.estimate_complexity(doc)
return TaskAnalysis(
priority=self.calculate_priority(urgency_score, sentiment, complexity),
category=self.suggest_category(doc),
estimated_duration=self.estimate_duration(complexity),
tags=self.extract_tags(doc)
)
Technical Architecture
Frontend (React + TypeScript)
The frontend is built with React and TypeScript, providing a responsive and intuitive user interface:
// Task component with real-time updates
import { useState, useEffect } from 'react';
import { useWebSocket } from '../hooks/useWebSocket';
interface Task {
id: string;
title: string;
description: string;
priority: 'low' | 'medium' | 'high' | 'urgent';
status: 'pending' | 'in_progress' | 'completed';
dueDate: Date;
aiSuggestions: AISuggestion[];
}
const TaskCard: React.FC<{ task: Task }> = ({ task }) => {
const [isUpdating, setIsUpdating] = useState(false);
const { sendMessage } = useWebSocket();
const updateTaskStatus = async (newStatus: Task['status']) => {
setIsUpdating(true);
try {
await api.updateTask(task.id, { status: newStatus });
sendMessage({
type: 'task_updated',
taskId: task.id,
status: newStatus
});
} catch (error) {
console.error('Failed to update task:', error);
} finally {
setIsUpdating(false);
}
};
return (
<div className={`task-card priority-${task.priority}`}>
<h3>{task.title}</h3>
<p>{task.description}</p>
{task.aiSuggestions.length > 0 && (
<div className="ai-suggestions">
<h4>💡 AI Suggestions</h4>
{task.aiSuggestions.map(suggestion => (
<div key={suggestion.id} className="suggestion">
{suggestion.text}
</div>
))}
</div>
)}
<TaskActions
task={task}
onStatusChange={updateTaskStatus}
disabled={isUpdating}
/>
</div>
);
};
Backend (FastAPI + Python)
The backend provides a robust API with AI integration:
from fastapi import FastAPI, Depends, HTTPException
from sqlalchemy.orm import Session
from typing import List
import asyncio
app = FastAPI(title="AI Task Manager API")
@app.post("/tasks/", response_model=TaskResponse)
async def create_task(
task: TaskCreate,
current_user: User = Depends(get_current_user),
db: Session = Depends(get_db)
):
# Analyze task with AI
ai_analysis = await task_analyzer.analyze_task(task.description)
# Create task with AI suggestions
db_task = Task(
title=task.title,
description=task.description,
user_id=current_user.id,
priority=ai_analysis.priority,
category=ai_analysis.category,
estimated_duration=ai_analysis.estimated_duration
)
db.add(db_task)
db.commit()
db.refresh(db_task)
# Generate AI suggestions asynchronously
asyncio.create_task(
generate_task_suggestions(db_task.id)
)
return TaskResponse.from_orm(db_task)
@app.get("/analytics/productivity")
async def get_productivity_analytics(
current_user: User = Depends(get_current_user),
db: Session = Depends(get_db)
):
analyzer = ProductivityAnalyzer(current_user.id, db)
return await analyzer.generate_analytics()
Real-time Updates with WebSockets
from fastapi import WebSocket
import json
class ConnectionManager:
def __init__(self):
self.active_connections: List[WebSocket] = []
async def connect(self, websocket: WebSocket):
await websocket.accept()
self.active_connections.append(websocket)
def disconnect(self, websocket: WebSocket):
self.active_connections.remove(websocket)
async def broadcast_task_update(self, task_id: str, update_data: dict):
message = {
"type": "task_updated",
"task_id": task_id,
"data": update_data
}
for connection in self.active_connections:
try:
await connection.send_text(json.dumps(message))
except:
# Remove dead connections
await self.disconnect(connection)
manager = ConnectionManager()
@app.websocket("/ws/{user_id}")
async def websocket_endpoint(websocket: WebSocket, user_id: str):
await manager.connect(websocket)
try:
while True:
data = await websocket.receive_text()
# Handle incoming messages
await handle_websocket_message(data, user_id)
except:
manager.disconnect(websocket)
AI Integration
OpenAI GPT Integration
The application uses OpenAI’s GPT models for intelligent task analysis and suggestions:
import openai
from typing import List, Dict
class AITaskAssistant:
def __init__(self, api_key: str):
openai.api_key = api_key
async def generate_task_breakdown(self, task_description: str) -> List[str]:
prompt = f"""
Break down this task into smaller, actionable subtasks:
Task: {task_description}
Please provide 3-5 specific subtasks that would help complete this task.
Format as a simple list.
"""
response = await openai.ChatCompletion.acreate(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": prompt}],
max_tokens=300
)
content = response.choices[0].message.content
return [task.strip() for task in content.split('\n') if task.strip()]
async def suggest_time_blocks(self, tasks: List[Task]) -> Dict[str, str]:
task_list = '\n'.join([f"- {task.title} (Priority: {task.priority})" for task in tasks])
prompt = f"""
Given these tasks, suggest optimal time blocks for completion:
{task_list}
Consider:
- High priority tasks should be scheduled during peak energy hours (9-11 AM, 2-4 PM)
- Complex tasks need larger time blocks
- Similar tasks can be batched together
Provide suggestions in format: "Task Name: Suggested Time"
"""
response = await openai.ChatCompletion.acreate(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": prompt}],
max_tokens=400
)
# Parse response into structured suggestions
return self.parse_time_suggestions(response.choices[0].message.content)
Database Design
The application uses PostgreSQL with carefully designed schemas for optimal performance:
-- Tasks table with AI-enhanced fields
CREATE TABLE tasks (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
user_id UUID NOT NULL REFERENCES users(id),
title VARCHAR(255) NOT NULL,
description TEXT,
priority task_priority NOT NULL DEFAULT 'medium',
status task_status NOT NULL DEFAULT 'pending',
category VARCHAR(100),
estimated_duration INTEGER, -- in minutes
actual_duration INTEGER,
due_date TIMESTAMP,
completed_at TIMESTAMP,
ai_analyzed_at TIMESTAMP,
created_at TIMESTAMP DEFAULT NOW(),
updated_at TIMESTAMP DEFAULT NOW()
);
-- AI suggestions table
CREATE TABLE ai_suggestions (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
task_id UUID NOT NULL REFERENCES tasks(id),
suggestion_type VARCHAR(50) NOT NULL, -- 'breakdown', 'scheduling', 'priority'
content JSONB NOT NULL,
confidence_score DECIMAL(3,2),
applied BOOLEAN DEFAULT FALSE,
created_at TIMESTAMP DEFAULT NOW()
);
-- User productivity patterns
CREATE TABLE productivity_patterns (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
user_id UUID NOT NULL REFERENCES users(id),
hour_of_day INTEGER NOT NULL CHECK (hour_of_day >= 0 AND hour_of_day <= 23),
day_of_week INTEGER NOT NULL CHECK (day_of_week >= 1 AND day_of_week <= 7),
productivity_score DECIMAL(3,2) NOT NULL,
task_count INTEGER DEFAULT 0,
completion_rate DECIMAL(3,2) DEFAULT 0,
updated_at TIMESTAMP DEFAULT NOW()
);
Performance Optimizations
Caching Strategy
from redis import Redis
import json
from functools import wraps
redis_client = Redis(host='localhost', port=6379, db=0)
def cache_result(expiration: int = 3600):
def decorator(func):
@wraps(func)
async def wrapper(*args, **kwargs):
# Create cache key from function name and arguments
cache_key = f"{func.__name__}:{hash(str(args) + str(kwargs))}"
# Try to get from cache first
cached_result = redis_client.get(cache_key)
if cached_result:
return json.loads(cached_result)
# Execute function and cache result
result = await func(*args, **kwargs)
redis_client.setex(
cache_key,
expiration,
json.dumps(result, default=str)
)
return result
return wrapper
return decorator
@cache_result(expiration=1800) # Cache for 30 minutes
async def get_productivity_analytics(user_id: str):
# Expensive analytics calculation
return calculate_detailed_analytics(user_id)
Background Task Processing
from celery import Celery
from datetime import datetime, timedelta
celery_app = Celery('task_manager')
@celery_app.task
def process_ai_analysis(task_id: str):
"""Background task for AI analysis of tasks"""
task = get_task_by_id(task_id)
if not task:
return
# Perform AI analysis
ai_assistant = AITaskAssistant()
analysis = ai_assistant.analyze_task(task.description)
# Update task with AI insights
update_task_ai_analysis(task_id, analysis)
# Generate suggestions
suggestions = ai_assistant.generate_suggestions(task)
save_ai_suggestions(task_id, suggestions)
@celery_app.task
def update_productivity_patterns():
"""Daily task to update user productivity patterns"""
users = get_all_active_users()
for user in users:
patterns = calculate_productivity_patterns(user.id)
update_user_patterns(user.id, patterns)
Key Learnings
Building this AI-powered task management application taught me several important lessons:
- AI Integration Complexity: Integrating AI features requires careful consideration of response times and fallback mechanisms
- User Experience: AI suggestions must be subtle and helpful, not overwhelming
- Data Privacy: Handling personal productivity data requires strict security measures
- Performance: Real-time features demand efficient caching and background processing
- Scalability: The system must handle varying loads of AI processing requests
The combination of modern web technologies with AI capabilities creates a powerful tool that truly adapts to user behavior and improves productivity over time.